T6.5. Machine à vapeur.

On adopte le modèle de machine à vapeur suivant : un système fermé constitué d'un kg d'eau sous deux phases liquide et vapeur décrit un cycle *ABCD*. Les évolutions *BC* et *DA* sont adiabatiques et réversibles; les évolutions *AB* et *CD* sont isothermes-isobares. On note *x* le titre massique en vapeur. Les données concernant le cycle sont résumées dans le tableau ci-après.

	A	В	C	D
p en bar	20	20	1	1
T en K	485	485	373	373
x	0	1	x_C	x_D

On donne les extraits suivants des tables thermodynamiques de l'eau :

		Liquide juste saturé $x_V = 0$			Vapeur saturante-sèche $x_V = 1$		
T	p	v_L	h_L	s_L	v_V	h_V	s_V
K	bar	m ³ .kg ⁻¹	kJ.kg ⁻¹	kJ.K ⁻¹ .kg ⁻¹	$m^3.kg^{-1}$	kJ.kg ⁻¹	kJ.K ⁻¹ .kg ⁻¹
485	20	1,18.10-3	909	2,45	0,0998	2 801	6,35
373	1	1,04.10-3	418	1,30	1,70	2 676	7,36

- 1. Donner l'allure du cycle dans un diagramme (s, T). Faire aussi figurer la courbe de saturation.
- 2. Calculer les titres en vapeur x_C et x_D , les volumes massiques v_C et v_D , les enthalpies massiques h_C et h_D et les énergies internes massiques u_C , u_D , u_A , u_B .
- 3. Calculer les travaux et les transferts thermiques reçus par l'eau au cours de chacune des évolutions *AB*, *BC*, *CD* et *DA*.
- 4. Définir le rendement thermodynamique r de cette machine et le calculer. Comparer r au rendement d'un moteur de Carnot fonctionnant entre des sources à Tc = 485 K et Tf = 383 K; commenter le résultat.