T3.10. Compression d'un gaz parfait.

1. Compression isotherme.

Lors d'une compression isotherme on a à chaque stade de la transformation :

$$T_{ex} = T_o = T_{gaz} = cste$$

 $p_{ex} = p_{gaz}$

1/3/1/8/0.CO/ Le travail des forces de pression s'écrit alors :

$$W = -\int_{i}^{f} p_{ext} dV = -\int_{i}^{f} p_{gaz} dV$$

Le gaz étudié est supposé parfait, d'où:

$$p_{gaz} = \frac{nRT_o}{V}$$

$$W = -\int_i^f \frac{nRT_o}{V} dV = nRT_o \ln \frac{V_o}{V_1}$$

$$W = nRT_o \ln \frac{P_1}{P_o} \qquad W = 1, 7.10^3 \text{ J}$$

2. Compression brutale.

Si à l'équilibre thermodynamique à l'état final la pression est égale à P_1 pour le gaz, cela veut dire que la pression extérieure lors de cette compression est justement P_1 et qui est constante.

$$W' = -\int_{i}^{f} p_{ext} dV = -\int_{i}^{f} p_{1} dV = -p_{1} (V_{1} - V_{o})$$

$$W' = -p_{1} V_{1} \left(1 - \frac{V_{o}}{V_{1}} \right)$$

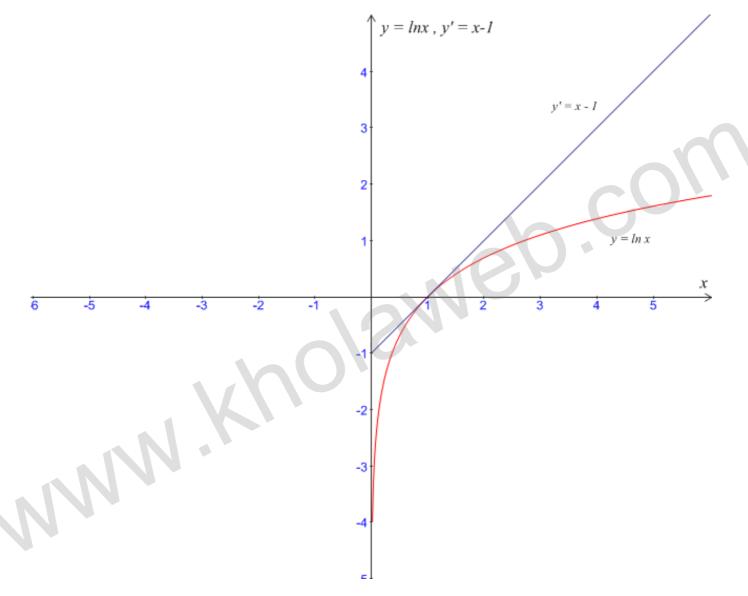
$$Or \ p_{1} V_{1} = nRT_{o} \ \text{et} \ p_{o} V_{o} = nRT_{o} \ \text{d'où} :$$

$$W' = -nRT_{o} \left(1 - \frac{P_{1}}{P_{o}} \right)$$

$$W' = nRT_{o} \left(\frac{P_{1}}{P_{o}} - 1 \right) \qquad W' = 2, 5.10^{3} \ \text{J}$$

3. Représentation graphique.

On pose:
$$y = \frac{W}{nRT_a} = \ln \frac{P_1}{P_a} = \ln x$$
 et $y' = \frac{W'}{nRT_a} = \frac{P_1}{P_a} - 1 = x - 1$



On peut remarquer que : $y' \ge y$. Le travail fourni lors de la compression isotherme qui est mécaniquement réversible est plus faible que celui fourni lors de la compression brutale.

4. Chaleur échangée.

Dans les cas, la température finale du gaz parfait est la même que celle de son état initial. D'où :

$$\Delta U = W + Q = 0 \quad \Longrightarrow Q = -W$$

$$\Delta U = W' + Q' = 0 \Rightarrow Q' = -W'$$