O6.2. Réseau réel de diffraction à fentes larges.

Un réseau par transmission est constitué par N fentes parallèles, de même largeur l, et dont l'équidistance des centres est a (a > l); percées dans un écran opaque. Ce réseau est éclairé en incidence normale par une lumière monochromatique de longueur d'onde λ .

- 1. Déterminer, à une constante multiplicative près A_0 , l'amplitude complexe de l'onde diffractée par ce réseau dans la direction faisant l'angle θ avec la normale au plan du réseau.
- 2. En déduire la loi de répartition de l'intensité lumineuse diffractée dans la direction $(\sin u)^2 \left[\sin(N\gamma u)\right]^2$

$$\theta$$
 sous la forme : $I(u) = I_o \left(\frac{\sin u}{u}\right)^2 \left[\frac{\sin(N\gamma u)}{N\sin(\gamma u)}\right]^2$.

On exprimera les paramètres u, γ et I_o en fonction de θ et des données a, l, λ , A_0 et N.

3. En déduire la loi $Ip(\theta)$ de répartition de l'intensité dans le cas du réseau parfait à N fentes infiniment fines. Tracer le graphe de l'intensité en fonction de $\sin\theta$ dans l'intervalle $-2\lambda/a < \sin\theta < 2\lambda/a$.