
NNN

M5.2. Oscillations forcées par déplacement de l'oscillateur.

Une petite sphère de masse m est suspendue à l'extrémité inférieure M d'un ressort de raideur k et de longueur à vide l_0 . Cette sphère plonge dans un fluide visqueux. Lorsqu'elle se déplace à la vitesse \vec{v} par rapport au fluide, ce dernier exerce la force de frottement fluide $\vec{f} = -h\vec{v}$, pour des vitesses faibles. A t=0, l'extrémité supérieure A du ressort est soumise à un déplacement $x_A(t)$.

- 1. Déterminer l'équation différentielle vérifiée par l'élongation x(t) du point M par rapport à sa position d'équilibre.
- 2. Dans le cas d'une excitation sinusoïdale $x_A(t) = X_A cos(\omega t + \varphi_A)$, déterminer l'amplitude et le déphasage de la réponse en élongation x(t). On posera : $\omega_o^2 = \frac{k}{m}$; $u = \frac{\omega}{\omega_o}$; $Q = \frac{m\omega_o}{h}$.
- 3. Déterminer l'amplitude et le déphasage de la vitesse.
- 4. Proposer une analogie électrique.

