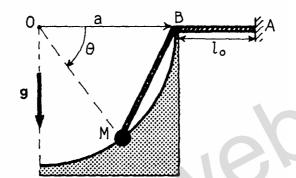
M3.9. Petites oscillations au voisinage d'une position d'équilibre.


On considère un élastique $\mathcal E$ de raideur k et de longueur au repos l_o ainsi qu'une particule $\mathcal M$ de masse m.

- 1. \mathcal{M} étant accroché à \mathcal{E} , déterminer l'allongement a de \mathcal{E} ainsi que la pulsation ωo des oscillations verticales de \mathcal{M} autour de sa position d'équilibre.
- 2. On réalise un quart de circonférence de centre 0 et de rayon a. \mathcal{E} , accroché en A, passe en B dans un petit anneau. $AB = l_o$. \mathcal{M} coulisse sans frottement sur le cercle.

Etablir l'équation différentielle du mouvement de \mathcal{M} .

Calculer α valeur de θ pour laquelle $\mathcal M$ est en équilibre.

Etudier les petites oscillations de \mathcal{M} au voisinage de cette position d'équilibre, calculer leur pulsation ω .

