M3.10. Recherche de positions d'équilibre stables.

On considère un point matériel P de masse m, attaché à l'extrémité d'un fil inextensible et sans masse, de longueur OP = a, accroché en un point fixe O du repère terrestre. On considère le référentiel terrestre galiléen. On considère le champ de pesanteur uniforme: $\vec{g} = g\vec{u}_z$. Oz désigne la verticale <u>descendante</u>. Soit A le point de Oz de cote z = a. Les mouvements de P sont considérés plans et repérés au cours du temps par l'angle $\theta = (\overrightarrow{OA}, \overrightarrow{OP})$.

Un dispositif approprié fait que le point B situé sur l'axe Oz à la cote b > a exerce sur P une force \overline{F} centrale de centre B, répulsive, de norme $\frac{k}{r^2}$ où k est une constante positive et r la distance entre B et P.

Le fil reste tendu et inextensible de longueur a.

Il est à noter que le triangle *OPB* est non rectangle.

On pose :
$$\lambda^3 = \frac{kb}{mg}$$
.

- 1. Quelle est l'unité de λ ?
- 2. Exprimer la distance r en fonction de a, b, et θ .
- 3. Déterminer l'équation du mouvement en θ . On l'exprimera sous la forme : $\ddot{\theta} = \omega_a^2 f(\theta)$. Déterminer $f(\theta)$ en fonction de θ , λ et r.
- 4. Ecrire les équations qui déterminent les valeurs θ_i de θ qui correspondent à d'éventuelles positions d'équilibre.

Déterminer les conditions sur λ pour qu'une position d'équilibre particulière existe. Faire apparaître les trois domaines:

domaine $\alpha : \lambda < \lambda_1$

domaine $\beta: \lambda_I < \lambda < \lambda_2$

domaine γ : $\lambda > \lambda_2$,

 λ_1 et λ_2 étant des valeurs qu'on déterminera en fonction de a et b.

Dans quel domaine se situe la situation de l'absence de \vec{F} ?

En déduire, pour ce domaine, la stabilité ou instabilité des différentes des différentes positions d'équilibre existantes.