## M2.10. Etude d'un mouvement à force centrale avec amortissement.

Un point P, de masse m, repéré par ses coordonnées polaires r = OP et  $\theta = (\overrightarrow{Ox}, \overrightarrow{OP})$ , se déplace, sans frottement, sur un plan horizontal. Ce point est lancé dans le plan xOy à partir de Po, de coordonnées cartésiennes (0, a) dans un champ de force  $\overrightarrow{F} = -K\overrightarrow{OP}$ , et subit, en outre, une force résistante proportionnelle à sa vitesse :  $\overrightarrow{F}' = -b\overrightarrow{v}$  (b et K sont des constantes positives).

- 1. Etablir en coordonnées polaires  $(r, \theta)$  les équations différentielles du mouvement de P.
- 2. En déduire dans le cas où la vitesse angulaire  $\omega$  est constante :
  - a. l'équation horaire r(t) en fonction de a, b, m et t.
  - b. la vitesse angulaire  $\omega$  en fonction de K, m et b.

