EM5.5. Mouvement d'une particule chargée dans un champ magnétique uniforme.

Charge de l'électron (module) $e = 1,6.10^{-19} \,\mathrm{C}$;

Masse d'un proton : $m_p = 1,67.10^{-27} \text{ kg}$;

Masse d'un électron : $m_e = 9,1.10^{-31} \text{ kg}$;

$$1 \text{ eV} = 1,6.10^{-19} \text{ J};$$

On se place dans le cadre de la mécanique newtonienne et on néglige toutes les forces autres que la force magnétique.

Une particule, de masse m et de charge q, est soumise à l'action d'un champ magnétique \vec{B} uniforme et permanent (indépendant du temps) dans le référentiel R(Oxyz) supposé galiléen. On appelle respectivement $\vec{u}_x, \vec{u}_y, \vec{u}_z$ les vecteurs unitaires des axes Ox, Oy et Oz. Le champ magnétique \vec{B} est

colinéaire à
$$Oz$$
: $\vec{B} = B\vec{u}_z$ ($B > 0$). On note $\omega = \frac{qB}{m}$.

La vitesse \vec{v} de la particule a pour composantes v_x, v_y et v_L : $\vec{v} = v_x \vec{u}_x + v_y \vec{u}_y + v_L \vec{u}_z$; on pose $\vec{v}_\perp = v_x \vec{u}_x + v_y \vec{u}_y$ et $\vec{v}_L = v_L \vec{u}_z$; \vec{v}_\perp et \vec{v}_L désignent ainsi les composantes de la vitesse \vec{v} respectivement perpendiculaire et parallèle au champ \vec{B} . La norme du vecteur \vec{v}_\perp est notée v_\perp . À l'instant initial, la particule se trouve en \vec{O} avec la vitesse : $\vec{v}_o = v_{\perp o} \vec{u}_x + v_{Lo} \vec{u}_z$ ($v_{\perp o} > 0, v_{Lo} > 0$)

- 1. Montrer que l'énergie cinétique Ec de la particule est une constante du mouvement.
- 2. Montrer que \vec{v}_L est une constante du mouvement. En déduire que v_\perp est également constant au cours du mouvement. On pose $E_{c\perp} = \frac{1}{2} m v_\perp^2$.

On étudie la projection du mouvement de la particule dans le plan P_{\perp} perpendiculaire à \overrightarrow{B} .

- 3. Déterminer les composantes v_x et v_y de la vitesse de la particule en fonction de $v_{\perp o}$, ω et du temps t.
- 4. En déduire les coordonnées x et y de la particule à l'instant t.
- 5. Montrer que la projection de la trajectoire de la particule dans le plan P_{\perp} est un cercle Γ de centre C (centre guide) et de rayon a (rayon de giration). Déterminer les coordonnées x_C et y_C de C, le rayon a et la période de révolution T_I de la particule sur ce cercle en fonction de $v_{\perp a}$ et ω .
- 6. Tracer, avec soin, le cercle Γ dans le plan P_{\perp} , dans le cas d'un proton, puis dans le cas d'un électron. Préciser en particulier les sens de parcours de chaque particule sur Γ .
- 7. L'orbite circulaire Γ peut être assimilée à une petite spire de courant. Déterminer l'intensité i de ce courant associé au mouvement de la particule sur Γ .
- 8. Quelle est la trajectoire de la particule chargée? Expliquer pourquoi elle s'enroule sur un tube de champ du champ *B*.
- 9. On peut décomposer le mouvement de la particule en un mouvement sur un cercle dont le centre C se déplace à la vitesse v_L le long de Oz. Quelle distance b parcourt le centre C sur Oz durant la période T_1 . Exprimer b en fonction de v_L et ω . Comparer b et a dans le cas où $v_{Lo}^2 = \frac{v_{\perp o}^2}{10}$.