
NNN

E4.7. Impédance itérative.

Le circuit représenté ci-dessous est alimenté entre les bornes d'entrée A_1 et B_1 par un générateur de tension sinusoïdale de pulsation ω réglable, d'impédance interne négligeable qui fournit une tension u_1 de valeur efficace U_1 constante.

Les inductances sont pures et le condensateur est parfait.

On donne : $L = 2.10^{-3} \text{ H}$; $C = 1,0.10^{-9} \text{ F}$.

- 1. Exprimer en fonction de ω , L, C et de \underline{Z}_2 , impédance branchée à la sortie, l'impédance d'entrée \underline{Z}_1 , vue des points A_1 et B_1 .
- 2. Déduire de ce calcul l'impédance caractéristique \underline{Z}_c , définie par la condition $\underline{Z}_1 = \underline{Z}_2 = \underline{Z}_c$.
- 3. Pour quelles valeurs de la pulsation ω l'impédance caractéristique est-elle modélisable par un résistor de résistance Rc? On branche à la sortie entre les bornes A_2 et B_2 un résistor de résistance Rc_o égale à la valeur de Rc lorsque la pulsation ω tend vers zéro. Montrer que : $Rc_o = \sqrt{\frac{2L}{C}}$.