Chute d'un aimant dans un tuyau cylindrique.

Un aimant de masse m est assimilé à un moment magnétique $\overrightarrow{M} = M \overrightarrow{u}_z$. Il est initialement placé en O puis abandonné sans vitesse initiale : il décrit dans sa chute l'axe vertical Oz d'un cylindre de rayon a de hauteur h et d'épaisseur e. On suppose $e \ll a$.

On mesure le temps de chute correspondant à $h : t_c$ pour un cylindre conducteur, t'_c pour un cylindre non conducteur.

- 1. L'expérience montre que $t_c > t'_c$. Justifier, et préciser la nature des phénomènes physiques à l'origine de cette différence. On pourra assimiler un élément de cylindre de hauteur dz centré en un point O'à une « spire » parcourue par un courant induit $\delta i(t)$ et considérer la situation suivante à la date t schématisée par le schéma cicontre.
- 2. On montre que le courant $\delta i(t)$ circulant dans une « spire » située à la

cote Z du point O s'écrit : $\delta i = -\frac{3}{4} \frac{\mu_o M \gamma e}{\pi a^3} v \sin^4 \alpha \cos \alpha dZ$ où γ est la conductivité du metérieu et la viteges de l'eiment et α l'engle geue

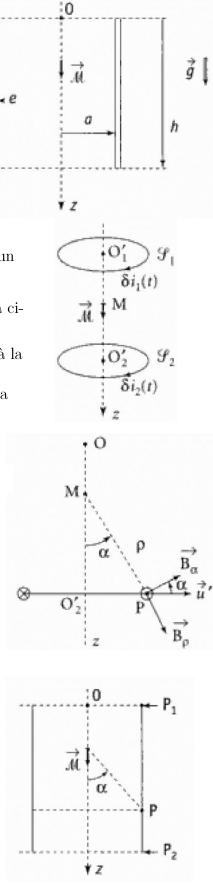
conductivité du matériau, v la vitesse de l'aimant et α l'angle sous lequel de l'aimant on voit le rayon de la spire.

On rappelle l'expression, en coordonnées sphériques (ρ, α, φ) , du champ magnétique crée par un moment magnétique \overrightarrow{M} , placé en un point M de l'axe, en un point P quelconque de l'espace :

$$\vec{B}(P) = \frac{\mu_o M}{4\pi\rho^3} \left(2\cos\alpha \vec{u}_\rho + \sin\alpha \vec{u}_\alpha\right)$$

Soit \vec{F} la force exercée par les courants induits sur l'aimant. Montrer qu'elle s'exprime sous la forme $\vec{F} = -\vec{Kv}$ avec

$$K = \frac{8}{9} \frac{\mu_o^2 M^2 \gamma e}{\pi a^4} \int_{\alpha_1}^{\alpha_2} \sin^6 \alpha \cos^2 \alpha d\alpha \text{ où } \alpha_1 \text{ et } \alpha_2 \text{ sont les angles}$$


associés aux points P_1 et P_2 .

Que devient ce résultat pour M suffisamment éloigné des bords des cylindre (on a h >> a). Commenter.

On donne : $\int_{0}^{\pi} \sin^{6} \alpha \cos^{2} \alpha d\alpha = \frac{5\pi}{128} .$

3. A.N. On a :
$$h = 1$$
m ; $g = 9.81$ m.s⁻² ; $a = 5$ mm ; $e = 1$ mm
 $\left\| \overrightarrow{M} \right\| = 0.75 \text{ A.m}^{-1}$; $m = 8.10^{-3} \text{ kg}$; $\mu_o = 4\pi .10^{-7} \text{ H.m}^{-1}$
 $\gamma_{Cu} = 5.98.10^7 \Omega^{-1} .\text{m}^{-1}$; $\gamma_{Al} = 3.77.10^7 \Omega^{-1} .\text{m}^{-1}$

L'expérience donne $t'_c = 0.46 \text{ s}$; $t_c(\text{Cu}) \cong 10 \text{ s}$; $t_c(\text{Al}) \cong 7 \text{ s}$. Comparer aux valeurs théoriques

