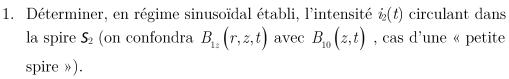
¤ PCSI ¤ 16/17. Approfondissement. Série 12.


Lévitation d'une spire conductrice.

Une bobine β_1 est constituée de N spires circulaires de rayon b réparties sur une longueur l et parcourues par un courant $i_1(t) = I_m \cos \omega t$.

A la cote $z = h = O_1 O_2$ est disposée une petite spire S_2 conductrice de rayon a et de section $s = \pi e^2$. On note R et L la résistance et l'inductance de S_2 . La bobine β_1 crée, sur son axe, un champ magnétique :

$$\overrightarrow{B}_{10}\left(r=0,z,t\right)=B_{_{m}}\left(z\right)\cos \omega \overrightarrow{tu}_{z} \ \text{ avec } B_{_{m}}\left(z\right)=\frac{1}{2}\,\mu_{_{o}}\frac{N}{l}\left(\cos \alpha\,'-\cos \alpha\right)I_{_{m}}$$

On utilise les coordonnées cylindrique (r, θ, z) d'axe O_1z .

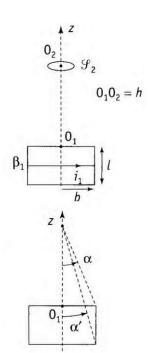
- a. Montrer que la résultante des forces de Laplace s'exerçant sur S_2 est portée par u_z . Exprimer cette résultante F_{L2} en fonction de a, $i_2(t)$ et de la composante radiale $B_{1r}(r=a,z)$ du champ B_1 .
- b. Le champ magnétique est à flux conservatif ce qui se traduit par la propriété mathématique suivante : $\oiint \vec{B}.\vec{dS} = 0$.

En prenant un cylindre élémentaire de rayon r et ses bases comprises entre les cotes $z - \frac{dz}{2}$ et $z + \frac{dz}{2}$ et d'axe $O_1 z$,

$$B_{1r}\left(a,z,t\right) = -\frac{a}{2}\frac{dB_{m}(z)}{dz}\cos\omega t$$

c. On pose $\vec{F}_{L2} = \vec{F}_{L2} \vec{u}_z$.

montrer que l'on a :


Déterminer la valeur moyenne temporelle $\langle F_{L2} \rangle$ de F_{L2} , et donner son expression pour $\omega >> \frac{R}{L}$. Commenter.

3. Applications numériques.

Calculer la valeur efficace $I_{eff} = \frac{I_m}{\sqrt{2}}$ du courant $i_1(t)$ pour que la spire en cuivre de masse volumique ρ puisse léviter à une hauteur h au-dessus de la bobine.

On donne:

$$R=1,7.10^{\text{-}4}~\Omega~~,~~L=1,2.10^{\text{-}8}~\text{H}~~,~~e=1~\text{mm}~~,~~a=5~\text{mm}~~,~~l=10~\text{cm}~~,~~h=1~\text{cm}~~b=2,5~\text{cm}~~,~~g=9,8~\text{m.s}^{\text{-}2}~~,~~\rho=9.10^{3}~\text{kg.m}^{\text{-}3}~~,~~\mu_{o}=4\pi.10^{\text{-}7}~\text{H.m}^{\text{-}1}~~$$

$$N=500~\text{spires}$$

