Etude d'un manomètre.

Les manomètres sont des dispositifs permettant de déterminer la différence de pression entre deux zones. Les manomètres différentiels sont ainsi constitués de deux récipients cylindriques (1) et (2), reliés par un tube de section s constante. Le récipient (1) est de surface S_{1} et contient un liquide de masse volumique $\rho_{1}=9,95.10^{2} \mathrm{~kg} \cdot \mathrm{~m}^{-3}$, le récipient
 (2) est de surface S_{2} et contient un liquide de masse volumique $\rho_{2}=1,01.10^{3} \mathrm{~kg} . \mathrm{m}^{-3}$. Les deux liquides sont non miscibles, leur surface de séparation est située à la hauteur h du bas du tube de raccord. Initialement la pression est la même au-dessus des deux liquides, égale à $P o$ et la surface libre des deux liquides est située à la hauteur h_{1} pour (1) et h_{2} pour (2) de la surface de séparation (voir schéma ci-contre).

1. La relation entre $\rho_{1}, \rho_{2}, h_{1}$ et h_{2} s'écrit:
a. $\rho_{1}\left(h-h_{1}\right)=\rho_{2}\left(h-h_{1}\right)$
b. $\rho_{1}\left(h_{2}-h\right)=\rho_{2}\left(h-h_{1}\right)$
c. $\rho_{1} h_{2}=\rho_{2} h_{1}$
d. $\rho_{1} h_{1}=\rho_{2} h_{2}$

On provoque alors au-dessus du liquide (1) une surpression $\Delta P>0$, ce qui provoque un déplacement de la surface de séparation entre les fluides de la quantité Δh, grandeur qu'on prendra positive.
2. En déduire le déplacement Δh_{1} de la surface libre du liquide (1).
a. $\Delta h_{1}=\frac{S_{1}}{s} \Delta h$
b. $\Delta h_{1}=\frac{S_{1}}{S_{2}} \Delta h$
c. $\Delta h_{1}=\frac{s}{S_{1}} \Delta h$
d. $\Delta h_{1}=\frac{s}{S_{2}} \Delta h$
3. En déduire le déplacement Δh_{2} de la surface libre du liquide (2).
a. $\Delta h_{2}=\frac{s}{S_{2}} \Delta h$
b. $\Delta h_{2}=\frac{S_{2}}{S_{1}} \Delta h$
c. $\Delta h_{2}=\frac{2 s}{S_{2}} \Delta h$ d. $\Delta h_{2}=\frac{S_{1}}{S_{2}} \Delta h$
4. En traduisant l'égalité des pressions à la surface de séparation des liquides (1) et (2), en déduire la relation reliant ΔP à Δh.(Faites des schémas !)
a. $\Delta P=\left(\rho_{1} g+\rho_{2} g\right) \Delta h$
b. $\Delta P=\left(\rho_{1} g\left(\frac{s}{S_{1}}-1\right)+\rho_{2} g\left(\frac{s}{S_{2}}+1\right)\right) \Delta h$
c. $\Delta P=\left(\rho_{1} g\left(\frac{s}{S_{1}}+1\right)+\rho_{2} g\left(\frac{s}{S_{2}}-1\right)\right) \Delta h$
d. $\Delta P=\left(\rho_{1} g \frac{s}{S_{1}}+\rho_{2} g \frac{s}{S_{2}}\right) \Delta h$
5. On définit la sensibilité de ce manomètre par $s_{e}=\frac{\Delta h}{\Delta P}$. Exprimer cette sensibilité en fonction de l'accélération de la pesanteur, des masses volumiques et des surfaces.
a. $s_{e}=\left(\rho_{1} g+\rho_{2} g\right)^{-1}$
b. $s_{e}=\left(\rho_{1} g\left(\frac{s}{S_{1}}-1\right)+\rho_{2} g\left(\frac{s}{S_{2}}+1\right)\right)^{-1}$
c. $s_{e}=\left(\rho_{1} g\left(\frac{s}{S_{1}}+1\right)+\rho_{2} g\left(\frac{s}{S_{2}}-1\right)\right)^{-1}$
d. $s_{e}=\left(\rho_{1} g \frac{s}{S_{1}}+\rho_{2} g \frac{s}{S_{2}}\right)^{-1}$
6. Faire l'application numérique pour $S_{1}=S_{2}=50 \mathrm{~s}$. On donne l'accélération de la pesanteur $\mathrm{g}=9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$.
a. $s_{e}=1,9 \mathrm{~mm} \cdot \mathrm{~Pa}^{-1}$
b. $s_{e}=3,6 \mathrm{~mm} \cdot \mathrm{~Pa}^{-1}$
c. $s_{e}=76 \mathrm{~mm} \cdot \mathrm{~Pa}^{-1}$
d. $s_{e}=36 \mathrm{~mm} \cdot \mathrm{~Pa}^{-1}$
7. Concernant le fonctionnement de ce manomètre on peut dire :
a. Qu'il est très sensible. b. Qu'il est peu sensible.
c. Qu'il est d'autant plus sensible que les masses volumiques des liquides utilisés sont très voisines.
d. Qu'il est d'autant plus sensible que les masses volumiques des liquides utilisés sont très différentes.

Retenue d'eau par un barrage.

1. Un barrage droit permet de réaliser une retenue d'eau sur une profondeur H et une largeur L .
La pression de l'air est P_{0}, et la masse volumique de l'eau est constante et vaut ρ_{0}.
Déterminer la résultante \vec{F} des efforts de pression qu'exerce l'eau sur le barrage.

On écrira $\stackrel{\vec{F}}{F}=F_{x} \vec{u}_{x}+\mathrm{F}_{z} \vec{u}_{z}$.
Déterminer le centre de poussée C .
2. Le profil du barrage est modifié. Il correspond à une courbe \mathscr{C} d'équation $z=f(x)$. La hauteur d'eau demeure H et la largeur est L. On notera x_{0} l'abscisse du point le plus haut de la courbe $\mathscr{C}^{\mathscr{C}}$ atteint par l'eau.
Donner les expressions des composantes F_{x} et F_{z} de la résulante des efforts de pression exercés par
 l'eau sur le barrage.
Application à un profil parabolique d'équation $z=\frac{1}{h} x^{2}$.
3. Commenter les résultats obtenus aux 1. et 2. relatifs à la composante F_{x}.

Remarque :

Pour déterminer le centre de poussée C qui se situe sur l'axe $O z$ à mi-largeur et à une altitude z_{c} comptée à partir de O, on cherchera le moment en C des forces de pression qui y est nul.

